

# INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

# ACOUSTICAL AND MOLECULAR BEHAVIOR OF AQUEOUS NACL, KCL, BACL<sub>2</sub>,NA<sub>2</sub>SO<sub>4</sub> AND MGSO<sub>4</sub> SOLUTIONS AT 298.15K

Yasmin Akhtar\*

\* Department of Chemistry, University of Tabuk, Tabuk, Saudi Arabia.

# ABSTRACT

Densities and Ultrasonic velocities of aqueous NaCl, KCl ,  $BaCl_2$  ,  $Na_2SO_4$  and  $Na_2SO_4$  have been determined experimentally at different molalities at 298.15 K. From these experimental results the adiabatic compressibility  $K_s$ , acoustic impedance Z, apparent molar volume  $\varphi_v$ , adiabatic compressibility,  $\varphi K_s$  and partial molal volume  $\varphi_v^0$  and partial molal adiabatic compressibility,  $\varphi^0 K_s$  at infinite dilution. The results are interpreted in terms of solute-solute and solute-solvent interactions in these systems. It has been observed that there exist strong solute-solvent interaction and dehydration effect in these binary systems. The properties of these electrolytes in water systems are discussed in terms of charge, size and hydrogen bonding effect.

**KEYWORDS:** Aqueous electrolytes, adiabatic compressibility, acoustic impedance, apparent molal volume and apparent molal adiabatic compressibility.

# INTRODUCTION

Ultrasonic investigation in aqueous solutions of electrolytes and non-electrolytes provides useful information in understanding the behavior of liquid systems. Also, Ultrasonic technique has been found to be more accurate and comprehensive in understanding solute-solvent interactions. There are various types of interactions are that exist between ions in solution of electrolytes; solute-solvent interactions are most important. Ultrasonic velocity and density data have been used to study the solute-solvent interactions. Ultrasonic velocities in aqueous solutions of ZnBr<sub>2</sub>, CaBr<sub>2</sub> and NaBr have been measured in ionic strength range of 0-8 at  $25^{\circ}$ C by Grzybkowski and Atkinson [1]. They reported that the relative ultrasonic velocities in dilute solutions were positive but very small and become, even negative and large in magnitude. The negative values of these properties relative sound velocities have been observed in the case of only few systems such as NaI and KI which display rather strong structure breaking properties. There has been number of physicochemical studies of amino acids in aqueous carbohydrates solutions [2-6]. Amino acids have zwitter-ion and are the constituents of the most important class of biopolymers, i.e. Proteins. Disarrangement water and electrolyte balance in living systems cause a wide variety of health problems. In physiological media such as blood, membranes, cellulose fluids etc., the dipolar character of amino acids (in presence of ions such as Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>+2</sup>and Cl<sup>-</sup>etc., dissolved in body water) has an important bearing on their biological functions.

Recently, we have made systematic effort to investigate the volumetric properties of amino acids in concentrated electrolytic solution [7-10]. It was found that NaCl and MgCl<sub>2</sub> increase the apparent molar volume of glycine. This increase could be attributed to the interactions of the ions of the NaCl, MgCl<sub>2</sub> L-Proline and L- Glutamine electrolytes and zwitter-ion head group of amino acids, causing the transfer of hydrated water molecule to the bulk state.

In the present paper, we report densities,  $\rho$  and ultrasonic velocities, u of binary systems of *a*queous NaCl, KCl, BaCl<sub>2</sub> Na<sub>2</sub>SO<sub>4</sub> and Na<sub>2</sub>SO<sub>4</sub> have been determined experimentally at 298.15K. From these experimental data a number of thermodynamic parameters namely, the adiabatic compressibility K<sub>s</sub>, acoustic impedance, apparent molal volume  $\phi_v$ , adiabatic compressibility,  $\phi K_s$ , and partial molal volume  $\phi_v^0$  and partial molal adiabatic compressibility, at infinite dilution respectively have been calculated. These parameters were utilized to study various interactions taking place in the solutions of these ternary systems were measured at 298.15K.

http://www.ijesrt.com

# **EXPERIMENTAL**

## Chemicals and preparation

NaCl, KCl, BaCl<sub>2</sub>, MgSO<sub>4</sub> and NaSO<sub>4</sub> (99.5% purity) were procured from ARS grade. The ultrasonic velocities and densities of the aqueous electrolytes solutions at various concentrations as well as in double distilled de-ionized water were measured experimentally. The double distilled water was used to make aqueous solutions of NaCl, KCl, BaCl<sub>2</sub> , MgSO<sub>4</sub> and NaSO<sub>4</sub> and to prepare 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 and 0.50m by weight dilution method. All the solutions were prepared by mass in dry box and were stored in special air-tight bottles and kept in dark to avoid photo chemical degradation. The weighing was done on an Afcoset ER-120A electronic balance with an accuracy  $\pm 0.1$  mg.

#### Measurement of density and ultrasonic velocity

The densities were measured with a single capillary pycnometer (made of Borosil glass) of bulb capacity of 8x10<sup>-6</sup>m<sup>3</sup>. The marks of the stems were calibrated using double distilled water at 298.15 K. The pycnometer was kept for about 30 minutes in a thermostatic water bath so that the thermal fluctuation in density was minimized. The ultrasonic velocities in solutions were measured using a single crystal variable path interferometer at 3MHz. The temperature of the test solutions was maintained at 298.15  $\pm 0.02\%$  K in an electronically controlled thermostatic water bath. The velocity and density data were found to be accurate with in  $\pm 0.10\%$  and  $\pm 0.01\%$  respectively.

## **RESULTS AND DISCUSSION**

The densities and ultrasonic velocities of the aqueous electrolytes NaCl, KCl, BaCl<sub>2</sub>, MgSO<sub>4</sub> and NaSO<sub>4</sub> solutions were determined at 298.15 K are recorded in Table 1. The values of u and  $\rho$  increase with increase in molalities (0.1 -0.5)m of the binary systems under investigation, which appear to be due to hydrophobic properties of solutes i.e. Hbond forming. The change in structure of solution as a result of H- bond formation leads to decrease in intermolecular free length [12] which indicates ion-solvent interactions are strong. The variation of ultrasonic velocity of electrolytes solution with the molalities in water can also be expressed in terms of derivations of (du/dc) can be shown to depend upon the molalities derivations of the density and adiabatic compressibility of the system investigated.

Thus in the relation:

$$du/dm = -u/2 \left[ \frac{1}{\rho} \left( \frac{d\rho}{dm} \right) + \frac{1}{K_s} \left( \frac{dK_s}{dm} \right) \right]$$
(1)

The quantity (1/p)(dp/dm) is negative while  $(1/K_s)(dK_s/dm)$  is positive in the present case and the net value is negative. The H-bonded structure of water is either disrupted by the addition of solutes. which is in good agreement with the results reported for adenosine mono, -di-and tri-phosphates + dixane +  $H_2O$  [13]. Consequently, the values of relative ultrasonic velocities  $\Delta u$  increase with increase in molalities of aqueous solutions of electrolytes NaCl, KCl, BaCl<sub>2</sub>, MgSO<sub>4</sub> and NaSO<sub>4</sub> which indicates structure making properties. The values of relative ultrasonic velocities  $\Delta u$  were calculated by equation:

$$\Delta \mathbf{u} = \mathbf{u} \cdot \mathbf{u}_0 \tag{2}$$

Where u and  $u_0$  are ultrasonic velocity of solution and solvent. Millero et al [14] have measured the relative ultrasonic velocities ( $\Delta u$ ) of aqueous NaCl, MgCl<sub>2</sub>, MgSO<sub>4</sub> and NaSO<sub>4</sub> solution at 0-45<sup>o</sup>C. The relative ultrasonic velocities values are increase with increase in molalities of electrolytes solution are given in Table 1. All the halide solutions of Na<sup>+</sup>, K <sup>+</sup> and Ba<sup>+2</sup> is slightly lower in the presence of sulphate solutions. This result reveals that relative ultrasonic velocities decrease with increase the size of ions . The Cl<sup>-</sup> and  $SO_4^{-2}$  ions are therefore structure makers. Acoustic Impedance

The values of acoustic impedance, Z of these binary systems (water + electrolytes) were calculated by the following relation and are reported in Table 1.

$$Z = u \cdot \rho$$
(3)  

$$Z^{0} = u^{0} \cdot \rho^{0}$$
(4)

The values of  $\Delta Z$  were calculated by this relation

http://www.ijesrt.com

#### © International Journal of Engineering Sciences & Research Technology [650]

(5)

$$\Delta Z = Z - Z_0$$

The values of Z and  $\Delta Z$  increase with increase in molalities of electrolytes which indicates solute-solvent interaction are strong and they behave as structure makers are shown in Table 1. The specific acoustic impedance of the medium for the particular type of wave being propagated and through it. The transmission of acoustic wave from one medium to another is important for transmission phenomenon in fluids. It may also correlated with ionic size Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>+2</sup> and Ba<sup>+2</sup> of ions. A definite correlation the specific acoustic impedance and dielectric constant of the solvent medium. The behavior of acoustic impedance can be explained on the basis of lyophobic interaction between solute (NaCl, KCl

,  $BaCl_2$  and  $MgSO_4$  and  $NaSO_4$  and solvent (aqueous) molecules, which maximum ion- solvent interaction and become responsible for the propagation of ultrasonic wave.

#### Adiabatic Compressibility

The adiabatic compressibility of the aqueous electrolytes NaCl, KCl,  $BaCl_2$ ,  $MgSO_4$  and  $NaSO_4$  solutions were determined at 298.15 K are recorded in Table-2 from the density and velocity data. The adiabatic compressibility was calculated by this relation

$$\begin{array}{l} K_{s}=1/u^{2}\rho \\ \Delta K_{s}=K_{s}-K_{s}^{0} \end{array}$$
(6)  
(7)

Where,  $K_s$  and  $K_s^0$  are the adiabatic compressibility of solution and solvent respectively. These variation have been found to be linearly convergent in the case of electrolytes solution which shows strong interactions in electrolytic solutions. The observed values of the adiabatic compressibility , $K_s$  Table 2 is found to decrease with the concentration of aqueous electrolytes in all the binary systems. This decrease in compressibility is expected due to structure making effect of NaCl, KCl, BaCl<sub>2</sub> , MgSO<sub>4</sub> and NaSO<sub>4</sub>. An increase is expected due to structure breaking effect of NaI and KI. This clearly suggested that the strength of interaction in the binary systems decreases with increasing concentration of electrolyte in the solutions .The compressibility behavior of aqueous electrolytes molecules in the present systems can be explained by considering the strong electrostatic compression of the solvent dipolar molecules [15]. Consequently, these polar end groups would be able to cause more electrostrictive contraction of neighboring water molecules. Lowering in the compressibility  $\Delta K_s$  of the electrolytic solution have been studied and found to increase with increasing molalities of aqueous electrolytes solution. The negative values shown in Table -2

#### Apparent molal volume

The apparent molal volume,  $\phi_v$  were calculated from measured density data by using the following equation:

$$\phi_{\rm v} = [1000 (\rho^0 - \rho) / m\rho \rho^0] + M/\rho \tag{8}$$

Where M is the molecular mass of the solute,  $\rho^0$  and  $\rho$  are densities of solvent and solution. The calculated values of  $\phi_v$  of these binary systems are given in Table 1 & 2. In these cases where molarity dependence of  $\phi_v$ , having definite trend points and increase with increase the temperature which indicates ion-solvent interactions are strong with rise the temperature The  $\phi_v$  values increase due to reduction in the electrostriction effect at terminals in the binary systems whereas it decreases due to disruption of side group hydration by that of the charged end.

The partial molal volume at infinite dilution  $\phi^{o_v}$  was calculated by taking an average data points. The linear variation is obtained by least square fitting to the following equation.

$$\Phi_{\rm v} = \phi_{\rm v}^0 + S_{\rm v} C^{1/2} \tag{9}$$

The intercept which is the partial molal volume at infinite dilution  $\phi^0_v$  is the experimental slope,  $S_v$  which is considered to be volumetric pair wise coefficient. The derived values  $\phi^0_v$  of along with  $S_v$  are summarized in Table 3. The values of  $\phi^0_v$  are positive of these binary systems which indicate ion-solvent interactions are strong. The values of  $\phi^0_v$  are less in presence of NaCl, KCl, BaCl<sub>2</sub> than MgSO<sub>4</sub> and NaSO<sub>4</sub>. Table 3 shows the values of  $\phi^0_v$  are larger in case of MgSO<sub>4</sub> and NaSO<sub>4</sub> has an intense force field and hence a strong hydration co sphere around it. Therefore hydration of MgSO<sub>4</sub> and NaSO<sub>4</sub> (ion-solvent) will be much more than that of NaCl, KCl, BaCl<sub>2</sub>. The SO<sub>4</sub><sup>-2</sup> ion results in intense electric field and thus, the possibility of interactions with is larger in case of MgSO<sub>4</sub> and NaSO<sub>4</sub>. The S<sub>v</sub> values of NaCl, KCl, BaCl<sub>2</sub> are negative and positive MgSO<sub>4</sub> and NaSO<sub>4</sub> which indicates solute-solute interactions are weak in case NaCl, KCl, BaCl<sub>2</sub> than MgSO<sub>4</sub> and NaSO<sub>4</sub> The studies suggest that ion- solvent interactions are stronger and solute -solute interaction are weak .The extent of interactions and structure making ability is greater in case of MgSO<sub>4</sub> and NaSO<sub>4</sub>.

Apparent molal adiabatic compressibility

The density and adiabatic compressibility values were employed for calculating apparent molal adiabatic compressibility,  $\phi K_s$  of solutes in aqueous electrolytes solutions at different concentration using the equation

$$\phi K_{s} = [1000 (\rho^{0} K_{s} - \rho K_{s}^{0}) / m\rho \rho^{0}] + M K_{s} / \rho$$
(10)

Table 3 shows that the positive values of  $\phi K_s$  which indicates strong solute-solvent interactions. The partial molal adiabatic compressibility,  $\phi^o K_s$  at infinite dilution are obtained from the plot of  $\phi K_s$  versus  $C^{1/2}$  by least square method. The molarity dependence of this parameter has been expressed in terms of the following equation

$$\Phi_{\rm Ks} = \Phi_{\rm Ks}^0 + S_{\rm Ks} \, m^{\frac{1}{2}} \tag{5}$$

where  $\phi^0_{Ks}$  is the partial molal adiabatic compressibility at infinite dilution. It provides information regarding solutesolvent interaction.  $S_{Ks}$  is the experimental slope. The values of  $\phi^0_{Ks}$  and  $S_{Ks}$  are also included in Table 3 . The values of  $S_{Ks}$  of NaCl, KCl, BaCl<sub>2</sub> + water indicating the presence of weak ion-pair interactions than MgSO<sub>4</sub> and NaSO<sub>4</sub> . Appreciable more negative values of  $\phi_{Ks}$  for both the binary systems, which indicate ion- solvent interaction, are strong. The apparent molal volume and compressibility of aqueous solutions of some transition metal ( $Mn^{+2}$ ,  $CO^{+2}$ ,  $Ni^{+2}$   $Zn^{+2}$ ) chlorides have been determined by Surdo et al [16]. At the infinite dilution partial molal volumes and compressibility of ions , it is possible to examine how ion-water interactions depends upon the size and charge of the ions. Since values of  $\phi^0_{Ks}$ , are more sensitive to structural changes associated with ion- water interactions.

## ACKNOWLEDGEMENT

I am highly thankful to Head Dr. Nadia Hussain, and Dr. T. Ahmad, Department of Chemistry, University of Tabuk, K.S.A for their co-operation and valuable suggestions.

#### REFERENCES

- [1] Y. Akhtar, S. F. Ibrahim, Arabian J. Chem. 4 (2011) 487-490.
- [2] F. J. Millero, A. L. Surdo and C. Shiv, J. Phys. Chem.87 (1978)784.
- [3] J. N. B. Mallick, R. K. Mohanty and U. Chakraborty, Indian J. Chem. 25A (1986) 1089.
- [4] Vishnu D., Y. Akhtar, J. D.Pandey, ActaAcoust. 84(1998) 976.
- [5] R. J. Laurich, C. R. Torok and M. J. TubergenJ. Phys. Chem.A 106 (2002)8013.
- [6] J. D. Pandey and Y. Akhtar J. Pure Appl.Ultrason. 18 (1996) 108.
- [7] A. Ali, Y. Akhtar, 21(2) (2009)43.
- [8] A. P. Mishra and S. K. Gautum, Indian J. Chem. 40A (2001) 100.
- [9] M. S. El-Eazby, J.M. Al-Hassan, N.F. Eweissdan F. AL-Massad, Can. J. Chem. 57 (1979) 104-114.
- [10] Y. Akhtar, Indian J. Phy. Chem. 4 (1) 2009.
- [11] Y. Akhtar, Fluid Phase Equil. 258 (2007)125.
- [12] D. Ragaurama, Indian J. Chem. 37A (1998)659-664.
- [13] J. D. Pandey, K. Mishra and V. MushranAcustica 80 (1994)563.
- [14] F. G. Millero, G. K. Ward and P. V. Chetrikin, J. Acoust. Soc. Amer. 61(1977)1492.
- [15] A. P. Mishra and Gautum S. K., Indian J. Chem. 40A (2001), 100 and Yu, Y. Y. Wang and D. Sun Indian J. Chem. 41A (2002)1126.
- [16] A. L. Surdo and F. G. Millero J. Phys. Chem. 84(1980)719.

| m                    | $\rho \times 10^{-3}$ u                   | Δu                  | Z×1                                   | $D^{-3}$ $\Delta Z \times 10^{-3}$     | a ut 270.13 <b>N</b> |
|----------------------|-------------------------------------------|---------------------|---------------------------------------|----------------------------------------|----------------------|
| (mol <sup>-1</sup> ) | (kg m <sup>-3</sup> ) (ms <sup>-1</sup> ) | (ms <sup>-1</sup> ) | (kg m <sup>-2</sup> s <sup>-1</sup> ) | (kg m <sup>-2</sup> s <sup>-1-</sup> ) |                      |
|                      |                                           | Pota                | ssium chlo                            | oride                                  |                      |
| 0.10                 | 1.001                                     | 1504                | 9.00                                  | 1506                                   | 12.00                |
| 0.15                 | 1.002                                     | 1509                | 14.00                                 | 1512                                   | 20.00                |
| 0.20                 | 1.004                                     | 1511                | 16.00                                 | 1017                                   | 25.00                |
| 0.25                 | 1.005                                     | 1512                | 24.00                                 | 1019                                   | 27.00                |
| 0.30                 | 1.009                                     | 1528                | 33.00                                 | 1541                                   | 49.00                |
| 0.35                 | 1.012                                     | 1554                | 59.08                                 | 1572                                   | 80.00                |
| 0.40                 | 1.014                                     | 1562                | 67.00                                 | 1582                                   | 90.00                |
| 0.45                 | 1.019                                     | 1568                | 73.00                                 | 1597                                   | 105.0                |
| 0.50                 | 1.020                                     | 1572                | 77.00                                 | 1603                                   | 110.0                |
|                      |                                           | sod                 | lium chlori                           | ide                                    |                      |
| 0.10                 | 1.001                                     | 1502                | 7.00                                  | 1504                                   | 12.00                |
| 0.15                 | 1.002                                     | 1505                | 10.00                                 | 1508                                   | 20.00                |
| 0.20                 | 1.004                                     | 1515                | 28.00                                 | 1523                                   | 31.00                |
| 0.25                 | 1.008                                     | 1531                | 36.00                                 | 1543                                   | 51.00                |
| 0.30                 | 1.009                                     | 1533                | 38.00                                 | 1547                                   | 55.00                |
| 0.35                 | 1.010                                     | 1548                | 48.00                                 | 1563                                   | 71.00                |
| 0.40                 | 1.014                                     | 1549                | 54.00                                 | 1566                                   | 74.00                |
| 0.45                 | 1.019                                     | 1554                | 59.00                                 | 1579                                   | 87.0                 |
| 0.50                 | 1.020                                     | 1578                | 83.00                                 | 1621                                   | 129.0                |
|                      |                                           | Ba                  | rium chlor                            | ide                                    |                      |
| 0.10                 | 1.013                                     | 1503                | 8.00                                  | 1523                                   | 31.00                |
| 0.15                 | 1.020                                     | 1504                | 9.00                                  | 1534                                   | 42.00                |
| 0.20                 | 1.028                                     | 1505                | 10.00                                 | 1046                                   | 54.00                |
| 0.25                 | 1.040                                     | 1506                | 11.00                                 | 1066                                   | 74.00                |
| 0.30                 | 1.049                                     | 1528                | 33.00                                 | 1589                                   | 97.00                |
| 0.35                 | 1.050                                     | 1537                | 42.08                                 | 1613                                   | 130.00               |
| 0.40                 | 1.060                                     | 1559                | 64.00                                 | 1652                                   | 164.00               |
| 0.45                 | 1.077                                     | 1569                | 74.00                                 | 1690                                   | 200.0                |
| 0.50                 | 1.086                                     | 1577                | 82.00                                 | 1713                                   | 221.0                |

Table 1 Densities (ρ) and ultrasonic velocity (u), and related thermodynamic properties of aqueous Potassium chloride, sodium chloride, Barium chloride, Magnesium sulphate and sodium sulphate at 298.15K

| Magnesium sulphate |                 |      |       |      |       |  |  |
|--------------------|-----------------|------|-------|------|-------|--|--|
| 0.10               | 1.011           | 1503 | 8.00  | 1519 | 27.00 |  |  |
| 0.15               | 1.015           | 1508 | 13.00 | 1530 | 38.00 |  |  |
| 0.20               | 1.016           | 1513 | 18.00 | 1037 | 45.00 |  |  |
| 0.25               | 1.017           | 1520 | 25.00 | 1045 | 53.00 |  |  |
| 0.30               | 1.019           | 1523 | 28.00 | 1552 | 60.00 |  |  |
| 0.35               | 1.021           | 1530 | 35.00 | 1562 | 70.00 |  |  |
| 0.40               | 1.026           | 1535 | 40.00 | 1570 | 78.00 |  |  |
| 0.45               | 1.028           | 1540 | 45.00 | 1580 | 88.60 |  |  |
| 0.50               | 1.020           | 1542 | 47.00 | 1585 | 93.00 |  |  |
|                    | sodium sulphate |      |       |      |       |  |  |
| 0.10               | 1.001           | 1504 | 9.00  | 1506 | 12.00 |  |  |
| 0.15               | 1.002           | 1509 | 14.00 | 1512 | 20.00 |  |  |
| 0.20               | 1.004           | 1511 | 16.00 | 1017 | 25.00 |  |  |
| 0.25               | 1.005           | 1512 | 24.00 | 1019 | 27.00 |  |  |
| 0.30               | 1.009           | 1528 | 33.00 | 1541 | 49.00 |  |  |
| 0.35               | 1.012           | 1554 | 59.08 | 1572 | 80.00 |  |  |
| 0.40               | 1.014           | 1562 | 67.00 | 1582 | 90.00 |  |  |
| 0.45               | 1.019           | 1568 | 73.00 | 1597 | 105.0 |  |  |
| 0 50               | 1               |      |       | 1    | 110.0 |  |  |

Adiabatic compressibility (K<sub>s</sub>), apparent molal volume ( $\phi_v$ ), apparent molal adiabatic compressibility ( $\phi_{Ks}$ ) of aqueous Potassium chloride, sodium chloride, Barium chloride, Magnesium sulphate and sodium sulphate at 298.15K

| m<br>(moll <sup>-1</sup> ) | -K <sub>s</sub> ×10 <sup>1</sup><br>(N <sup>-1</sup> m <sup>-2</sup> ) | $^{0} \Delta K_{s} \times 10^{10}$<br>(N <sup>-1</sup> m <sup>-2</sup> ) | $(\phi_v) \times 10^6$<br>(m <sup>3</sup> mol <sup>-1</sup> ) | $(\phi_{Ks}) \times 10^{10}$<br>( m <sup>5</sup> N <sup>-1</sup> mol <sup>-1</sup> ) | )      |  |  |
|----------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|--------|--|--|
|                            |                                                                        | Ρ                                                                        | otassium                                                      | chloride                                                                             |        |  |  |
| 0.10                       | 4.416                                                                  | 6 0.071                                                                  |                                                               | 35.66                                                                                | 552.3  |  |  |
| 0.15                       | 4.382                                                                  | 0.105                                                                    |                                                               | 42.01                                                                                | 575.1  |  |  |
| 0.20                       | 4.362                                                                  | 0.125                                                                    |                                                               | 40.17                                                                                | 456.0  |  |  |
| 0.25                       | 4.352                                                                  | 0.135                                                                    |                                                               | 43.08                                                                                | 356.4  |  |  |
| 0.30                       | 4.244                                                                  | 0.243                                                                    |                                                               | 34.99                                                                                | 668.9  |  |  |
| 0.35                       | 4.091                                                                  | 0.397                                                                    | ,                                                             | 32.08                                                                                | 305.7  |  |  |
| 0.40                       | 4.046                                                                  | 6 0.441                                                                  |                                                               | 32.40                                                                                | 988.8  |  |  |
| 0.45                       | 3.991                                                                  | 0.496                                                                    |                                                               | 25.96                                                                                | 1023.1 |  |  |

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology

| 0.50 | 3.967 | 0.520 | 28.84         | 950.9  |
|------|-------|-------|---------------|--------|
|      |       | sodiu | ım chloride   |        |
| 0.10 | 4.428 | 0.059 | 19.49         | 502.6  |
| 0.15 | 4.406 | 0.081 | 25.84         | 424.0  |
| 0.20 | 4.335 | 0.152 | 24.01         | 662.5  |
| 0.25 | 4.230 | 0.257 | 14.88         | 972.6  |
| 0.30 | 4.213 | 0.274 | 18.22         | 843.9  |
| 0.35 | 4.131 | 0.355 | 21.64         | 941.6  |
| 0.40 | 4.122 | 0.365 | 16.23         | 859.2  |
| 0.45 | 4.075 | 0.477 | 19.80         | 895.8  |
| 0.50 | 3.910 | 0.577 | 12.67         | 1067.7 |
|      |       | Bariu | ım chloride   |        |
| 0.10 | 4.369 | 0.118 | 85.52         | 825.1  |
| 0.15 | 4.334 | 0.153 | 91.87         | 643.8  |
| 0.20 | 4.298 | 0.189 | 90.04         | 586.7  |
| 0.25 | 4.239 | 0.248 | 72.89         | 727.1  |
| 0.30 | 4.086 | 0.401 | 71.48         | 1111.9 |
| 0.35 | 4.012 | 0.475 | 93.40         | 1036.5 |
| 0.40 | 3.874 | 0.613 | 87.28         | 1292.6 |
| 0.45 | 3.771 | 0.716 | 66.91         | 1465.7 |
| 0.50 | 3.702 | 0.785 | 66.71         | 1462.2 |
|      |       | Magne | sium sulphate |        |
| 0.10 | 4.378 | 0.109 | 13.24         | 109.43 |
| 0.15 | 4.332 | 0.155 | 22.90         | 956.21 |
| 0.20 | 4.299 | 0.188 | 47.77         | 754.63 |
| 0.25 | 4.256 | 0.231 | 62.70         | 677.51 |
| 0.30 | 4.231 | 0.256 | 69.30         | 580.43 |
| 0.35 | 4.184 | 0.303 | 74.02         | 577.89 |
| 0.40 | 4.148 | 0.339 | 77.56         | 548.72 |
| 0.45 | 4.109 | 0.378 | 78.08         | 545.55 |
| 0.50 | 4.091 | 0.396 | 80.51         | 488.17 |

| sodium sulphate |       |       |        |        |  |
|-----------------|-------|-------|--------|--------|--|
| 0.10            | 4.447 | 0.114 | 139.26 | 659.41 |  |
| 0.15            | 4.335 | 0.152 | 114.01 | 419.09 |  |
| 0.20            | 4.308 | 0.179 | 142.48 | 191.66 |  |
| 0.25            | 4.281 | 0.275 | 147.37 | 512.06 |  |
| 0.30            | 4.188 | 0.299 | 130.58 | 485.85 |  |
| 0.35            | 4.100 | 0.387 | 139.24 | 580.11 |  |
| 0.40            | 4.043 | 0.444 | 138.24 | 529.90 |  |
| 0.45            | 3.928 | 0.559 | 115.04 | 275.15 |  |
| 0.50            | 3.830 | 0.657 | 80.51  | 117.52 |  |

Table 3

The partial molal volume  $(\phi^0_v)$ , Partial molal adiabatic compressibility  $(\phi^0_{KS})$  and its experimental slope,  $(S_v)$  and  $(S_{KS})$ , of aqueous Potassium chloride, sodium chloride, Barium chloride, Magnesium sulphate and sodium sulphate at 298.15K

| Electrolytes (     | ∲ <sup>0</sup> v *10 <sup>6</sup><br>(m <sup>3</sup> mol <sup>-1</sup> ) | $S_v * 10^6$<br>(m <sup>3</sup> mol <sup>-3/2</sup> l <sup>-1/2</sup> ) | $\phi^0_{Ks} * 10^{10}$<br>(m <sup>5</sup> N <sup>-1</sup> mol <sup>-1</sup> ) | $\frac{S_{Ks} * 10^{10}}{(m^5 N^{-1} mol^{-3/2} l^{-1/2})}$ |
|--------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|
| Potassium Chloride | 20.82                                                                    | -20.11                                                                  | -1597.62                                                                       | -875.5                                                      |
| Sodium Chloride    | 20.83                                                                    | -24.89                                                                  | -1820.90                                                                       | -811.0                                                      |
| Barium Chloride    | 39.45                                                                    | -38.93                                                                  | -3158.02                                                                       | -2422.0                                                     |
| Magnesium sulphate | 228.53                                                                   | 331.66                                                                  | -3640.67                                                                       | -4681.0                                                     |
| Sodium sulphate    | 379.36                                                                   | 354.44                                                                  | -6228.10                                                                       | -8200.0                                                     |